
Efficient PAC Learnability of Dynamical

Systems Over Multilayer Networks

Zirou Qiu,1,2 Abhijin Adiga, 2 Madhav V. Marathe,1,2 S. S. Ravi,2,3

Daniel J. Rosenkrantz,2,3 Richard E. Stearns,2,3 Anil Vullikanti1,2 1

1Computer Science Dept., University of Virginia.
2Biocomplexity Institute and Initiative, University of Virginia.

3Computer Science Dept., University at Albany – SUNY.

Abstract. Networked dynamical systems are widely used as models of real-world cascade

phenomena such as the spread of disease and information. Prior research has addressed

the problem of learning the behavior of an unknown dynamical system when the underlying

network has a single layer. In this paper, we study the learnability of dynamical systems over

multilayer networks, which are much more realistic and challenging. First, we propose an

efficient PAC learning algorithm with provable guarantees, and establish bounds on the sample

complexity. Our results show that even though the hypothesis space grows exponentially in

the number of layers, the proposed learner only requires a small number of training examples.

Further, we provide a tight analysis of the Natarajan dimension, which measures the expressive

power of the hypothesis class. Our results show that, asymptotically, our bound on the

Nararajan dimension is tight for almost all multilayer graphs. The techniques and insights

in our paper provide the theoretical foundations for future investigation of learning problems

for multilayer systems.

1 Introduction

Networked dynamical systems are mathematical models for numerous cascade processes such as the

spread of social behaviors, information, diseases, and biological phenomena [6, 31, 33, 35, 39, 50, 52]. In

general, a networked dynamical system consists of an underlying graph where vertices are entities (e.g.,

individuals, genes), and edges are relationships between the entities. Further, each vertex has a state

and interaction functions (i.e., behavior), which specify how the state evolves over time. The system

dynamics proceeds in discrete time, with vertices updating states using interaction functions.

Inferring the unknown components of a networked system is an active area of research [2, 10, 12, 15,

38, 42]. One ongoing line of work is to learn the unknown interaction functions of entities (i.e., vertices)

in a networked dynamical system. Interaction functions play a critical role in the system dynamics. In

particular, these functions specify the decision rules that entities use to update their contagion states

(e.g., whether or not to believe a rumor). One example is the class of threshold interaction functions [24],

which are widely used to model the spread of social contagions [37, 58]. Specifically, each entity in the

network has a decision threshold that represents the tipping point for a behavioral (i.e., state) change.

In the case of a rumor, a person’s belief changes when the number of neighbors believing in the rumor

1

reaches a certain threshold. Overall, the interaction functions define the underlying mechanism of the

cascade process, which also describes the system’s global behavior (often complex and nonlinear) over

time [24]. Therefore, when the interaction functions in a system are unknown, learning these missing

components is of great interest.

Existing methods for learning interaction functions in networked systems only apply to the case

when the underlying graph has a single-layer. To our knowledge, the problem for the more complex and

realistic multilayer setting (that gives rise to multi-relational networks) has not received attention in the

literature. In this work, we fill this gap through a formal study of the learnability of the interaction

functions in dynamical systems over multilayer networks. Specifically, the graph in our target

system consists of multiple layers with generally different set of edges in each layer. This is a classic

setting for multilayer networks, and the ability of such networks to model complex real-world phenomena

has been widely recognized (e.g., [25, 34, 44]). In particular, multilayer networks allow heterogeneous ties

between vertices, with edges in each layer capturing a particular type of interaction (e.g., close friend,

acquaintance) [17, 34, 44]. The framework also permits more complex cascades that involve cross-layer

interactions [7, 16, 49].

Problem description. Consider a multilayer networked system where the interaction functions of

vertices are unknown. By inferring these functions, our goal is to learn a system that captures the

behavior of the true unknown system, with performance guarantees under the Probably Approximately

Correct (PAC) model [55]. We learn from snapshots of the true system’s dynamics, a common scheme

considered in related papers (e.g., [9, 12, 59]). Since our problem setting involves multiclass learning,

we also examine the Natarajan dimension [43], a well-known generalization of the VC dimension [57].

The Natarajan dimension measures the expressive power of the hypothesis class and characterizes the

sample complexity of learning [51]. Overall, we aim to answer the following questions: (i) How does one

efficiently learn the true underlying multilayer system, and how many training examples are sufficient?

(ii) What is the expressive power of the hypothesis class of multilayer networked systems?

Challenges. The multilayer setting poses new challenges. First, the number of hypotheses grows expo-

nentially in the number of layers; thus, a learner needs to find an appropriate hypothesis in a much larger

space. Further, a learner must carefully analyze the complex cross-layer interactions. For example, while

the training data (snapshots of dynamics) indicates a vertex’s state change, it does not provide informa-

tion about which layer(s) triggered the change. Additionally, when establishing a learner’s performance,

the analysis should account for the fact that a wrong prediction could be caused by any subset of layers.

The intertwined connections between vertices in the multilayer setting also introduce complications in

analyzing the Natarajan dimension. Overall, these challenges make our problem significantly different

from the corresponding problem for single-layer networks.

Our contributions are as follows:

• PAC learning. We show that a small training set is sufficient to efficiently PAC learn the multilayer

system. Specifically, we obtain the following results. (i) We develop an efficient PAC learner with

provable guarantees: w.p. at least 1 − δ, the prediction error is at most ϵ, for any ϵ, δ > 0. (ii) For
any fixed ϵ and δ, the number of training exampled used by our algorithm is only O(σk log (σk)),
where k is the number of layers and σ is the number of vertices with unknown interaction functions.

Thus, when σ is fixed, the size of an adequate training set does not increase with the network size

or density. This result also provides an upper bound on the sample complexity that is tighter than

the general information-theoretic bound [26]. (iii) We further extend the learner to the Probably

2

Mostly Approximately Correct setting [3] and prove that the amount of training data can be further

reduced under a relaxed notion of successful predictions by a learner. (iv) Using real-world and

synthetic multilayer networks, we also experimentally explore the relationship between the algorithm’s

performance and system parameters under various scenarios.

• Natarajan dimension. We provide a tight analysis of the Natarajan dimension (Ndim), which

measures the expressive power of the hypothesis class of multilayer systems. (i) We present a novel

combinatorial structure and establish its equivalence to shatterable sets. (ii) Based on this connection,

we present an (efficient) method for constructing shatterable sets and show that when restricting the

system to an individual layer, Ndim is exactly σ, the number of vertices with unknown interaction

functions. This precise characterization could be of independent interest. (iii) We then extend the

argument to show that for a k-layer system, Ndim is between σ and kσ and present classes of instances

where the bounds are tight. Our result also provides a lower bound on the sample complexity. (iv)
Lastly, using a probabilistic argument, we show that asymptotically for almost all graphs with n vertices

and k ≥ 2 layers, Ndim is exactly kσ.

Related work. Learning unknown components of networked systems is an active line of research. For

single-layer networks, many researchers have developed methods to address problems related to cascade

inference (e.g., learning the diffusion functions at vertices, edge parameters, source vertices, and contagion

states of vertices) by observing propagation dynamics. For instance, Chen et al. [9] infer the edge

probability and source vertices under the independent cascade model. Conitzer et al. [12] investigate the

problem of inferring opinions (states) of vertices in stochastic cascades under the PAC scheme. Lokhov

[38] studies the problem of reconstructing the parameters of a diffusion model given infection cascades.

Other representative results include [10, 13, 14, 15, 18, 23, 28, 29, 32, 42, 59]. Questions on learning

the network structure based on the outcomes of cascades have also been studied; see, for example [30,

46, 1, 19, 41, 22, 53]. To our knowledge, the problem of learning the interaction functions of networked

multilayer systems has not been examined.

The paper that is most closely related work is by Adiga et al. [2], where the PAC learnability of

threshold interaction functions in single-layer networked systems is studied. They present a consistent

learner when there are only positive examples and show the hardness of learning when negative examples

are also included. They also bound the sample complexity based on VC dimension. As mentioned

earlier, the multilayer setting introduces new challenges that do not arise in the single-layer setting. For

these reasons, the results in [2] cannot be directly applied to our multilayer setting, which requires new

techniques developed in our work.

2 Preliminaries

Our setting follows the existing research on learning networked systems. For the readers’ reference, we

have included a table of the settings for several related papers in the Appendix (Section 6.1).

2.1 Multilayer Networked Dynamical Systems

Multilayer networks. All the graphs considered are undirected. For any integer k ≥ 1, let [k] denote
the set {1, . . . , k}. A multilayer network [34] is a sequence of graphsM = {Gi}ki=1, Gi = (V,E i), where V
is a set of n vertices shared by all graphs in M, and E i is the set of edges in Gi, i ∈ [k]. Note that the

3

edge sets of graphs in M are generally different. Overall, one can view M as a k-layer network where

Gi ∈ M is the graph on the ith layer.

Dynamical systems. Dynamical systems on multilayer networks is a generalization of dynamical sys-

tems over a single-layer network, as studied in previous works, e.g., [4]; we also follow their notation.

A Multilayer Synchronous Dynamical System (MSyDS) over the Boolean domain B = {0,1} is a triple

h∗ = (M,F ,Ψ):

• M= {Gi}ki=1 is an underlying multilayer network with k layers. Each vertex has a state from B.
• F = {fi,v ∶ i ∈ [k], v ∈ V} is a collection of functions, with fi,v denoting vertex v’s local interaction

function on the ith layer Gi.
• Ψ = {ψv ∶ v ∈ V} is a collection of functions, with ψv denoting the master function of vertex v.

The system dynamics proceeds in discrete time. Starting from the initial states of vertices, at each

step, vertices update states synchronously using interaction functions and master functions. Specifically,

for any t ≥ 0, the state of each vertex v at time t + 1 is computed as follows:

• For each Gi ∈ M, the interaction function fi,v ∈ F is evaluated, where the inputs are the states of

vertices in v’s closed neighborhood (i.e., v and its neighbors) in Gi at time t; fi,v then outputs a value

in B. This gives a k-vector Wv for each v, where Wv(i) is the output of fi,v, i ∈ [k].
• Next, the master function ψv is evaluated, with Wv as the input. The output of ψv, which is a value

in B, is the next state of v (i.e., its state at time t + 1).

Interaction functions. We focus on threshold interaction functions, a classic framework to model

spreads of social contagions [24, 58]. In particular, each v ∈ V has an integer threshold τi(v) ∈ [0,degi(v)+
2] for each layer Gi, i ∈ [k]; here, degi(v) is the degree of v in Gi. The interaction function fi,v ∈ F outputs

1 if the number of active (i.e., state-1) vertices in v’s closed neighborhood in Gi is at least τi(v); fi,v
outputs 0 otherwise. If fi,v outputs 1, we say that the threshold condition of v is satisfied on Gi.

Figure 1: A 2-layer system with threshold in-
teraction functions and OR master
functions. Threshold values of ver-
tices v1 to v4 in the first layer are
(2,3,3,2), and in the second layer
are (3,3,2,1). State-1 vertices are
in blue. The configuration C =
(1,1,1,0), and it can be verified
that its successor is C′ = (1,0,0,1).

Master functions. The two classes of master functions proposed in the literature are OR and AND [8, 36].

When function ψv is OR, the next state of v is 1 iff there exists a layer i ∈ [k] where the interaction

function fi,v evaluates to 1. In other words, v’s next state is 1 iff its threshold condition is satisfied in at

least one layer. Analogously, for AND functions, the next state of v is 1 iff fi,v evaluates to 1 in all the

layers. An example of the dynamics for the OR master function is shown in Fig. 1.

A configuration C is an n-bit binary vector that specifies the state of each vertex at a particular

time step. We use C(v) to denote the state of vertex v in C. A configuration C′ is the successor of

C under a system h∗ if C′ evolves from C in one time step; this is denoted by C′ = h∗(C). Overall, the

evolution of system h∗ can be represented as a time-ordered sequence of configurations.

4

2.2 The Learning Problem

Hypothesis class. There is a ground truth MSyDS h∗. The learner is given partial information about

h∗, where the thresholds (on all layers) of a subset V ′ ⊆ V of vertices in h∗ are unknown. Let σ = ∣V ′∣.
The hypothesis class H consists of O(nσk) MSyDSs over all possible threshold values of vertices in V ′.
The goal is then to learn an MSyDS h ∈ H that is a good approximation of h∗ by inferring the unknown

thresholds. When V ′ = V, the thresholds of all vertices must be learned.

PAC learning. We learn the target system h∗ from snapshots of its dynamics. Formally, let X = {0,1}n

be the set of all n-bit binary vectors. Let T = {(Cj ,C′j)}
q
j=1 be a training set of q examples, which

consists of the snapshots of system dynamics. In particular, examples in T are configuration pairs, where

Cj is a drawn i.i.d. from an unknown distribution D over X , and C′j = h∗(Cj) is the successor of Cj
under h∗. We use T ∼ Dq to denote such a training set. For a new C ∼ D sampled, a hypothesis

h ∈ H makes a successful prediction if h(C) = h∗(C). The true error of a hypothesis h is defined as

L(D,h∗)(h) ∶= Pr C∼D[h(C) ≠ h∗(C)]. In the PAC model, when T is sufficiently large, the goal of a learner

is to output an h ∈ H s.t. with probability at least 1− δ over T ∼ Dq, it holds that L(D,h∗)(h) ≤ ϵ, for any
given ϵ, δ ∈ (0,1). The minimum number of training examples needed by any PAC learner to learn H is

called the sample complexity of H.

Natarajan dimension. Learning a hypothesis h ∈ H in our context can be cast as a multiclass clas-

sification problem, since h maps a configuration C to one of the possible 2n configurations (classes). To

characterize the expressive power of the hypothesis class H, we consider the Natarajan dimension [43],

which is a generalization of the VC dimension to the multiclass setting. The Natarajan dimension mea-

sures the complexity and expressiveness of the hypothesis class. Formally, a set R ⊂ X is shattered

by H if for every C ∈ R, one can find two associated configurations, denoted by CA,CB ∈ X , such that

(i) CA ≠ CB , and (ii) for every subset R′ ⊆ R, there exists h ∈ H such that ∀C ∈ R′, h(C) = CA and

∀C ∈ R ∖R′, h(C) = CB . The Natarajan dimension of H, denoted by Ndim(H), is the maximum size

of a shatterable set. Further, Ω((Ndim(H) + log(1/δ)) /ϵ) is a lower bound on the sample complexity of

learning H [51]. Overall, the larger the value of Ndim(H), the higher the expressive power of H.

3 PAC Learnability of Multilayer Networked Systems

In this section, we establish the efficient PAC learnability of the hypothesis class H, defined in Section 2.

We first develop an efficient learner by exploring the mechanism of cross-layer interactions. We then

show that a training set of size ⌈1/ϵ ⋅ σk ⋅ log (σk/δ)⌉ is sufficient for the learner to achieve the (ϵ, δ)-PAC
guarantee. Lastly, we show that our learner can also handle the more general PMAC learning setting [3],

which permits a more relaxed notion of predictions. Due to space limits, full proofs appear in the

Appendix, Section 6.2.

3.1 An Efficient PAC Learner

For a configuration C, a vertex v ∈ V and a layer i ∈ [k], let Γi[C, v] be the number of 1’s in the input

to the interaction function fi,v under C (i.e., the number of state-1 vertices in v’s closed neighborhood

in Gi). We call Γi[C, v] the score of v in Gi under C. Let τhi (v) be the learned threshold of v for the ith

layer in h, and let τh
∗

i (v) be v’s true threshold in the target system h∗.

5

PAC Learner. Our algorithm learns a hypothesis h ∈ H by inferring the unknown thresholds in the target

system h∗. Suppose the master function is OR. Given a training set T ∼ Dq, for each vertex v in the set V ′

of vertices with unknown thresholds, for each layer Gi ∈ M, assign τhi (v) =max(C,C′)∈T ∶ C′(v)=0{Γi[C, v]}+1.
If C′(v) = 1 for all (C,C′) ∈ T , assign τhi (v) = 0.

On the other hand, if the master function is AND, assign τhi (v) =min(C,C′)∈T ∶ C′(v)=1{Γi[C, v]}. If

C′(v) = 0 for all (C,C′) ∈ T , assign τhi (v) = degi(v) + 2, where degi(v) is the degree of v in Gi. Lastly, the
algorithm returns the corresponding system h ∈ H. One can easily verify that h has zero empirical risk.

Further, the running time is O(nk ⋅ ∣T ∣). Since H is finite, it follows that the class H is efficiently PAC

learnable [51].

Theorem 3.1. The class H is efficiently PAC learnable.

3.2 The Sample Complexity

We now show that our algorithm does not require too many training examples to PAC-learn H. To

begin with, a well-known general result in [26] implies that the sample complexity mH(δ, ϵ) of H is upper

bounded by (1/ϵ) log (∣H∣/δ), where ϵ, δ ∈ (0,1) are the two parameters in the PAC scheme. In our case,

one can derive that

mH(δ, ϵ) ≤
1

ϵ
⋅ (σk ⋅ log (davg(V ′)) + log (

1

δ
), (1)

where σ = ∣V ′∣, k is the number of layers, and davg(V ′) is the average degree of the vertices of V ′ in the

network where all the layers are merged into a single layer with parallel edges removed.

An alternative bound. The bound (1) depends explicitly on the average degree since a denser network

always leads to a larger hypothesis class. Nevertheless, we now establish an alternative bound on the

training set size ∣T ∣ for our algorithm; this bound does not depend explicitly on any graph parameters

(e.g., davg) except for the number of layers k.

A key lemma. For a configuration C ∼ D, and a vertex v, let B(C, v) denote the event that “h∗(C)(v) =
0”, i.e., in the true system h∗, in every layer, C does not satisfy the threshold condition of v. For a layer

i ∈ [k] and a system h ∈ H, let A(C, i, v, h) be the “bad” event that “(1) the threshold condition of v

on the ith layer is satisfied under h, and (2) B(C, v) occurs”. Formally, A(C, i, v, h) is the event that

“Γi[C, v] ≥ τhi (v) and ∀j ∈ [k], Γj[C, v] < τh
∗

j (v)”.

We now bound the probability (over T ∼ Dq) of our algorithm learning a “bad” h ∈ H s.t. PrC∼D[A(C, i, v, h)] ≥
α, for a given α ∈ (0,1).

Lemma 3.2. For a v ∈ V ′ and an i ∈ [k], suppose τh∗i (v) ≥ 1. Let h ∈ H be a hypothesis learned from

a training set T of size q ≥ 1. For a given α ∈ (0,1), and an integer ρi(v) ∈ [0, τh
∗

i (v)):

(1) If all ρi(v) satisfy PrC∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] < α. Then PrC∼D[A(C, i, v, h)] < α.

(2) Even if (1) does not hold, that is, there is a ρi(v) such that PrC∼D[B(C, v) and Γi[C, v] ≥
ρi(v)] ≥ α, then PrC∼D[A(C, i, v, h)] ≥ α holds with probability at most (1 − α)q over T ∼ Dq.

For an error rate α ∈ (0,1), Lemma 3.2 states that the probability (over T ∼ Dq) of the algorithm

learning a “bad” hypothesis h where PrC∼D[A(C, i, v, h)] ≥ α is at most (1 − α)q. Using this lemma, we

now present the result on the size of an adequate training set for our algorithm.

6

Theorem 3.3. For any ϵ, δ ∈ (0,1), with a training set of size q = ⌈1/ϵ ⋅ σk ⋅ log (σk/δ)⌉, the proposed

algorithm learns a hypothesis h ∈ H such that with probability at least 1−δ (over T ∼ Dq), PrC∼D[h(C) ≠
h∗(C)] < ϵ .

Implication on the sample complexity. Theorem 3.3 provides an upper bound on the sample

complexity mH(δ, ϵ) of learning H. Specifically, mH(δ, ϵ) ≤ ⌈ 1ϵ ⋅ σk ⋅ log (
σk
δ
)⌉.

Remark. With the proposed learner, Theorem 3.3 shows that an adequate number of examples to PAC-

learn H does not explicitly depend on the average degree or the size of the multilayer graph. Thus, when

other parameters are fixed, the sample complexity of learning H does not grow as the graph gets larger

or denser. Further, Our bound in Theorem 3.3 is tighter than Ineq (1) in several regimes. For instance,

for a fixed σ, the bound in Ineq (1) grows as davg(V ′) gets larger; on the other hand, our bound remains

unchanged.

Extension to the PMACModel. Our PAC learner can handle a more general ProbablyMostly Approximately

Correct (PMAC) framework [3], where the goal is to make predictions that are good approximations for

the true values. Specifically, the learned hypothesis h makes a successful prediction if h(C) agrees with

h∗(C) on the states of more than (1 − β) fraction of the vertices in V ′, for a given factor β ∈ (0,1).
Foramally, let W (h(C), h∗(C)) be the number of vertices in V ′ whose states in h(C) are different from

those in h∗(C). For given ϵ, δ, β ∈ (0,1), the goal is to learn a hypothesis h ∈ H such that with probability

at least 1 − δ over T ∼ Dq, Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ.

The PMAC model has been used in many contexts, such as learning submodular functions [47, 3] and

cascade inference [12]. Our next theorem shows that the training set can be significantly reduced under

this setting.

Theorem 3.4. For any given ϵ, δ, β ∈ (0,1), with a training set T of size q = ⌈1/ϵ ⋅ 1/β ⋅ k ⋅ log (σk/δ)⌉,
the proposed algorithm (Section 3.1) learns an h ∈ H such that with probability at least 1 − δ over

T ∼ Dq, h satisfies the condition Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ.

Remark. Compared to the bound on the PAC sample complexity in Theorem 3.3, the size of an adequate

training set under the PMAC model is reduced by a multiplicative factor of σβ. For instance, when β is

a constant (i.e., to obtain a constant-factor approximation), the training set size is decreased by a linear

(w.r.t. σ) factor. This demonstrates a trade-off between the quality of the prediction and the size of the

training data: when our learner is allowed to make approximate predictions, it requires a much lower

number of examples to learn an appropriate hypothesis.

4 Tight Analytical Results for Natarajan Dimension

Recall that the Natarajan dimension (Ndim) of a hypothesis class measures the expressiveness of the

class and characterizes the sample complexity of PAC learning [43]. In particular, the higher the value

of Ndim, the greater is the expressive power of the class. In this section, we examine the Natarajan

dimension of the hypothesis class H, denoted by Ndim(H), and develop the following results. Proofs of

all the results appear in the Appendix, Section 6.3.

First, we present an efficient method for constructing shatterable sets based on an iterative search

technique. Using this method, we establish that Ndim(H) is exactly σ when the underlying network

7

has only one layer. Previously, Adiga et al. [2] showed that for the single-layer case where σ = n, the
dimension of H is at least n/4. Our precise characterization of Ndim(H) provides both an improvement

over their bound [2] and an extension to arbitrary σ.

Next, we show that for multilayer networks, Ndim(H) is bounded between σ and kσ. This proof uses

an extended version of our argument for the single-layer case. Further, we present classes of instances

where the bounds are tight. Our results also show that the best lower bound for sample complexity that

one can obtain using this approach is Ω((σ + log (1/δ))/ϵ).

Lastly, we further tighten our analysis by showing that asymptotically, for almost all graphs (i.e.,

the probability tends to 1) with n vertices and k ≥ 2 layers, Ndim(H) of the corresponding hypothesis

class H is exactly σk.

4.1 An Exact Characterization for a Single Layer

Consider the case where the underlying network of the true system h∗ has a single layer. We present a

combinatorial characterization of a shatterable set, which allows us to obtain an exact value for Ndim(H).
We begin with some definitions.

Definition 4.1 (Landmark Vertices). Suppose the underlying network has a single layer. Given a

set R ⊆ X , a vertex v ∈ V ′ is a landmark vertex for a configuration C ∈ R if the score Γ[C, v] ≠ Γ[Ĉ, v]
for all Ĉ ∈ R ∖ {C}.

The landmark vertices play a key role in R being shatterable. Given R ⊆ X , let W(R) ⊆ V ′ be the

(possibly empty) set of vertices that are landmark vertices for at least one configuration in R.

Definition 4.2 (Canonical Set). Suppose the underlying network has a single layer. A set R ⊆ X is

canonical w.r.t. H if there exists an injective mapping from R to W(R) s.t. each C ∈ R is mapped

to a landmark vertex of C.

Shattering. By the definition of shattering (see Section 2), each C in a shatterable setR is associated

with two configurations, denoted by CA and CB , where CA ≠ CB .

Definition 4.3 (Contested Vertices). We call a vertex v contested for a C ∈ R if CA(v) ≠ CB(v).

By linking landmark vertices to contested vertices, our next Lemma shows that for a single-layer

system, the property of being canonical is equivalent to being shatterable.

Lemma 4.4. When the underlying network has a single layer, a set R ⊆ X can be shattered by H if

and only if R is canonical w.r.t. H.

Remark. By definition, the size of a canonical set is at most ∣V ′∣ = σ. From Lemma 4.4, it follows that

Ndim(H), which is the maximum size of a shatterable set, is at most σ when the underlying network

has a single layer.

Next, we present an efficient method for constructing a canonical set of size σ based on depth-

first search (see proof of Theorem 4.5 in the Appendix). Consequently, for any underlying single-layer

network, there exists a shatterable set of size exactly σ. Overall, we obtain the tight result that

for single-layer systems, Ndim(H) = σ. Formally:

8

Theorem 4.5. When the underlying network has a single layer, a shatterable set of size σ can be

constructed. Thus, Ndim(H) = σ.

Remark. Theorem 4.5 is interesting since for many problems [56, 5], including those on learning net-

worked systems [2], known results on such dimensions are bounds rather than exact values. Further, our

graph theoretic machinery (e.g., canonical set) may be of independent interest in studying other learning

problems for dynamical systems.

4.2 Bounds on Ndim for Multilayer Systems

Based on the results developed in the previous section, we obtain bounds on Ndim(H) when the underlying

networkM has k ≥ 2 layers. We first prove that Ndim(H) ≤ kσ by showing that each v ∈ V ′ is contested
for at most k configurations in any shatterable set. We then show that Ndim(H) ≥ σ by establishing that

any shatterable set obtained by restricting the system to any single layer in M is also shatterable over

the multilayer networkM. We start with the upper bound:

Lemma 4.6. If the network has k ≥ 2 layers, then the size of any shatterable set R is at most kσ.

To establish a lower bound on the size of a shatterable set, we prove the following lemma.

Lemma 4.7. Suppose h∗ is an MSyDS whose underlying network has k ≥ 2 layers. Let ĥ∗ be a

single-layer system obtained from h∗ by using the network in any layer i ∈ [k]. If a set R is shatterable

by the hypothesis class of ĥ∗, then it is also shatterable by the hypothesis class of h∗.

By Theorem 4.5, when the underlying network has a single layer, there exists a shatterable set of size

σ. Thus, Lemma 4.7 implies that there also exists a shatterable set of size σ for the multilayer setting.

Overall, we obtain the following bounds on Ndim(H):

Theorem 4.8. Suppose the underlying network has k ≥ 2 layers. Then σ ≤ Ndim(H) ≤ kσ.

Remark. There are classes of multilayer systems where the bounds are tight. To match the lower bound,

consider a class of 2-layer networksM = {G1,G2} where for every vertex v, the set of neighbors in G2 is

a superset of its neighbor set in G1, with exactly one extra neighbor in G2. One can easily verify that

Ndim(H) = σ in this case. On the other hand, in the next section, we show that the upper bound (kσ)

is tight for almost all threshold MSyDSs.

Implications in the sample complexity. By a result in [51], our bounds on Ndim(H) in Theorem 4.8

lead to the following bounds on the sample complexity for PAC learning H.

c1
σ + log(1/δ)

ϵ
≤ mH(δ, ϵ) ≤

1

ϵ
⋅ (c2 ⋅ kσ ⋅ log (

kσ

ϵ
) + kσ2 + log (1

δ
)) (2)

for some constants c1, c2 ≥ 0.

Remark. The upper bound in the above inequality has the dominant term O(kσ2), while our upper

bound (established in Theorem 3.3) is O(kσ log (kσ)). Thus, this general upper bound is weaker than

our bound. As for the lower bound in Ineq (2), when the number of layers k is a constant (a realistic

scenario in real-world networks by the Dunbar’s number [20]), our upper bound on the sample complexity

(Theorem 3.3) is within the factor O(log (σ)) of the lower bound.

9

4.3 The Asymptotic Tightness of the Bounds

We have shown that for any k-layer system, Ndim(H) is at most kσ. In this section, we further explore

the expressive power of the hypothesis class and prove that asymptotically (i.e., as n Ð→∞), for almost

all graphs with n vertices and k ≥ 2 layers, Ndim(H) of the corresponding hypothesis class is exactly kσ;

i.e., the highest expressiveness possible which matches our upper bound.

Approach overview. Given a multilayer networkM, we first define a special set Q of vertex-layer pairs

inM. We then show that for each such set Q, there is a shatterable set of size ∣Q∣ for the corresponding

hypothesis class under M. Next, consider a graph M chosen uniformly at random from the space of

all k-layer graphs with n vertices. We prove that asymptotically with probability 1, M admits such a

special set Q that contains all the kσ vertex-layer pairs, thus implying the existence of a shatterable set

of size kσ.

Vertex-layer set. For a k-layer network M and a subset V ′ of vertices, let QM,V ′ be a set of vertex-

layer pairs (v, i), v ∈ V ′, i ∈ [k], such that every (v, i) ∈ QM,V ′ satisfies the following condition: NM[v, i]∖
NM[v′, i′] ≠ ∅,∀(v′, i′) ∈ QM,V ′ , (v′, i′) ≠ (v, i), where NM[v, i] is the closed neighborhood of v in the

ith layer ofM. We first establish the correspondence between such a set QM,V ′ and a shatterable set.

Lemma 4.9. Given a multilayer networkM and a subset V ′ of vertices, for each set QM,V ′ , there is

a shatterable set of size ∣QM,V ′ ∣ for the corresponding hypothesis class over M, where thresholds of

vertices in V ′ are unknown.

Our next lemma shows that, asymptotically, almost all graphsM with n vertices and k layers have

a set QM,V ′ of size kσ, where V ′ is a subset of vertices and σ = ∣V ′∣.

Lemma 4.10. Given n ≥ 1, k ≥ 2, and V ′ ⊆ [n], letM be a graph chosen uniformly at random from

the space of all k-layer graphs with n vertices. With probability at least 1− 4 ⋅ (σk)2 ⋅ (3
4
)n,M admits

a set QM,V ′ of size kσ, where σ = ∣V ′∣.

Lastly, by Lemmas 4.9 and 4.10, we conclude that for any k ≥ 2, asymptotically in n, almost all the

hypothesis classes of threshold dynamical systems over k-layer graphs have Ndim exactly kσ.

Theorem 4.11. Given k ≥ 2, as n approaches infinity, almost all the hypothesis classes of threshold

dynamical systems over k-layer graphs have Ndim exactly σk.

Remark. “Almost all” is a standard term in the probabilistic method to indicate that the proportion of

the graphs that satisfies a certain property tends to one as the number of nodes increases (e.g., see [21]).

In our case, the proportion 1 − 4 ⋅ (σk)2 ⋅ (3
4
)n approaches 1 quickly due to the exponent of n. In fact,

we empirically found that for this proportion to be close to 1, n only needs to be around 1,000 (See

Appendix, Section 6.4).

5 Experimental Analysis

We present experimental studies on the relationships between model parameters and the empirical per-

formance of our PAC algorithm. Our goal is to compare theoretical results with empirical findings and

explore the performance of the algorithm on different networks [40, 45, 54, 11], shown in Table 1.

10

Dataset Type k n m Avg. deg.

Aarhus Social 5 61 620 20.33

CKM-Phy Social 3 246 1,551 12.61

Multi-Gnp Random 2 500 7,495 15

PPI Biology 7 900 12,870 28.6

Twitter Social 2 2000 10,233 10.23

Table 1: List of multilayer networks.
Parameters k, n, andm are the
number of layers, the number
of vertices, and the total num-
ber of edges in a network, re-
spectively.

Training and testing. For each network, we construct a target ground-truth system where the threshold

of each vertex v ∈ V on each layer i is assigned uniformly at random from [0,degi(v) + 2]. For each

ground-truth MSyDS h∗ defined above, a training set T = {(Ci, h∗(Ci))}qi=1 is constructed, where each

Ci is sampled from a distribution D. We consider distributions where the state of each vertex in Ci ∈ T
is 0 w.p. p and 1 w.p. 1 − p, for a fixed p ∈ {0.1,0.5,0.9}. In general, a higher p implies a distribution

that is more biased towards vertices in state 0. Our PAC algorithm then uses T to learn a hypothesis

h ∈ H where all the thresholds are inferred. To evaluate the quality of h, we sample 10,000 configurations

from D, and compute the empirical loss ℓ, which is the fraction of sampled configurations C’s where

h(C) ≠ h∗(C). In presenting the results, each data point is the average over 50 learned hypotheses.

5.1 Experimental Results

Impacts of model parameters. We first examine the relationships between the loss ℓ and the training

set size ∣T ∣, over three distributions (of samples) specified by different values of p. Experimental results

using the Multi-Gnp network (Table 1) are presented in Fig 2(a), where the thresholds of all vertices

must be learned (i.e., σ = n = 500).

0 500 1000
|T |: Training set size

0.0

0.5

1.0

`:
E

m
p

ir
ic

al
lo

ss p = 0.1

p = 0.5

p = 0.9

0 100 200 300 400 500
σ: # of vertices with unknown thresholds

0.0

0.2

0.4

`:
E

m
p

ir
ic

al
lo

ss

Figure 2: (a): ℓ vs ∣T ∣ and
(b): ℓ vs σ, over
different distributions
specified by p. The
underlying network is
Multi-Gnp (Table 1).
The stdev for all data
points is less than
0.09.

Observations. In Figure 2(a), as ∣T ∣ increases, we observe a decrease in the loss ℓ. Such a relationship

is expected since a larger sample usually provides more information about the underlying true system.

Further, note that for each value of ∣T ∣, the loss increases as the distribution of samples becomes more

biased towards vertices having state 0. One reason for this behavior is that when states in C ∼ D consist

mostly of 0’s, the score of each vertex (on each layer) under C could be far from its true threshold.

Since our algorithm learns thresholds based on these scores, it will require more examples to learn an

appropriate hypothesis when there are more 0’s in each training sample.

Next, we study the relationship between ℓ and σ, under a fixed training set size ∣T ∣ = 500 over different

distributions. The results for the Multi-Gnp network (Table 1) are shown in Fig 2(b). From Fig 2(b),

observe that ℓ increases with σ. This is because a larger σ leads to an (exponentially) larger hypothesis

space. Since the amount of training data (i.e., ∣T ∣) the algorithm receives is fixed, a learned hypothesis

would incur a higher loss when σ is larger. Nevertheless, even though ∣H∣ is exponential in σ, the loss ℓ

11

under our algorithm grows much more slowly.

Impact of the number of layers. We study the effect of the graph structure on ℓ. We first examine the

relationship between ℓ and ∣T ∣ using the real-world multilayer networks in Table 1. In these experiments,

we set σ = n (i.e., the thresholds of all vertices are to be learned) and choose D as the uniform distribution.

The results are shown in Fig 3(a).

0 500 1000 1500
|T |: Training set size

0.0

0.5

1.0

`:
E

m
p

ir
ic

al
lo

ss Aarhus

CKM-Phy

PPI

Twitter

2 4 6
k: The number of layers

0.0

0.2

0.4

`:
E

m
p

ir
ic

al
lo

ss σ = 100 σ = 300 σ = 500

Figure 3: (a): ℓ vs ∣T ∣, over dif-
ferent real-world net-
works (Table 1), and
(b): ℓ vs k over dif-
ferent values of σ,
where the underly-
ing network is Gnp.
The stdev for all data
points is less than
0.08.

Observations. From Fig 3(a), we observe a joint effect of σ and k on the loss ℓ. In particular, if the

network has more vertices (thus a larger σ = n), the learned hypothesis h usually has a higher loss ℓ, as

one would expect. Further, even though the Twitter network has more vertices than the PPI network,

the latter network has more layers. Since the size of the hypothesis class is exponential w.r.t k, for the

same ∣T ∣, observe that the h under the PPI network incurs a higher loss. Next, we study the effect of

k on the loss ℓ using multilayer Gnp networks of size 500 and average degree (on each layer) of 10. We

increase the number of layers from 2 to 6 while fixing ∣T ∣ at 500. The result is shown in Fig 3(b) for three

values of σ. Overall, we observe a positive correlation between k and ℓ; this is because a larger k leads

to a larger hypothesis space.

6 Future Work

We studied the PAC learnability of interaction functions in dynamical systems over multilayer networks.

One direction for future work is to improve our lower bound on the sample complexity for PAC learnabil-

ity. The second direction is to tighten the gap between the lower and upper bounds on the Natarajan

dimension for multilayer systems. A third direction is to consider a noisy setting where labels in the

training set (i.e., the successor configurations) may be incorrect with a small probability.

References

[1] B. Abrahao, F. Chierichetti, R. Kleinberg, and A. Panconesi. Trace complexity of network inference.

In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 491–499. ACM, 2013.

[2] Abhijin Adiga, Chris J Kuhlman, Madhav Marathe, S Ravi, and Anil Vullikanti. PAC learnability of

node functions in networked dynamical systems. In International Conference on Machine Learning,

pages 82–91. PMLR, 2019.

[3] Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular functions. In Proceedings of

the forty-third annual ACM symposium on Theory of computing, pages 793–802, 2011.

12

[4] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.

Complexity of reachability problems for finite discrete dynamical systems. Journal of Computer and

System Sciences, 72(8):1317–1345, 2006.

[5] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension

and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning

Research, 20(1):2285–2301, 2019.

[6] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,

Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and

dynamics. Physics Reports, 874:1–92, 2020.

[7] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús Gómez-Gardenes,

Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin. The structure and

dynamics of multilayer networks. Physics reports, 544(1):1–122, 2014.

[8] Charles D Brummitt, Kyu-Min Lee, and K-I Goh. Multiplexity-facilitated cascades in networks.

Physical Review E, 85(4):045102, 2012.

[9] Wei Chen, Xiaoming Sun, Jialin Zhang, and Zhijie Zhang. Network inference and influence maxi-

mization from samples. In International Conference on Machine Learning, pages 1707–1716. PMLR,

2021.

[10] Yanxi Chen and H. Vincent Poor. Learning mixtures of linear dynamical systems. International

Conference on Machine Learning, 162:3507–3557, 2022.

[11] James Coleman, Elihu Katz, and Herbert Menzel. The diffusion of an innovation among physicians.

Sociometry, 20(4):253–270, 1957.

[12] Vincent Conitzer, Debmalya Panigrahi, and Hanrui Zhang. Learning opinions in social networks. In

International Conference on Machine Learning, pages 2122–2132. PMLR, 2020.

[13] Vincent Conitzer, Debmalya Panigrahi, and Hanrui Zhang. Learning influence adoption in hetero-

geneous networks. In Proc. AAAI, pages 6411–6419. AAAI, 2022.

[14] Hadi Daneshmand, Manuel Gomez-Rodriguez, Le Song, and Bernhard Schoelkopf. Estimating dif-

fusion network structures: Recovery conditions, sample complexity & soft-thresholding algorithm.

In International conference on machine learning, pages 793–801. PMLR, 2014.

[15] Quinlan E Dawkins, Tianxi Li, and Haifeng Xu. Diffusion source identification on networks with

statistical confidence. In International Conference on Machine Learning, pages 2500–2509. PMLR,

2021.

[16] Manlio De Domenico, Clara Granell, Mason A Porter, and Alex Arenas. The physics of spreading

processes in multilayer networks. Nature Physics, 12(10):901–906, 2016.

[17] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä, Yamir Moreno, Mason A

Porter, Sergio Gómez, and Alex Arenas. Mathematical formulation of multilayer networks. Physical

Review X, 3(4):041022, 2013.

[18] Nan Du, Yingyu Liang, Maria Balcan, and Le Song. Influence function learning in information

diffusion networks. In International Conference on Machine Learning, pages 2016–2024. PMLR,

2014.

[19] Nan Du, Le Song, Ming Yuan, and Alex Smola. Learning networks of heterogeneous influence.

13

Advances in neural information processing systems, 25, 2012.

[20] Robin IM Dunbar. Coevolution of neocortical size, group size and language in humans. Behavioral

and brain sciences, 16(4):681–694, 1993.

[21] Paul Erdős and Robin J Wilson. On the chromatic index of almost all graphs. Journal of combina-

torial theory, series B, 23(2-3):255–257, 1977.

[22] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. In

Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1019–1028. ACM, 2010.

[23] S. González-Bailón, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. The dynamics of protest re-

cruitment through an online network. Scientific Reports, 1:7 pages, 2011.

[24] Mark Granovetter. Threshold models of collective behavior. American journal of sociology,

83(6):1420–1443, 1978.

[25] Zaynab Hammoud and Frank Kramer. Multilayer networks: aspects, implementations, and applica-

tion in biomedicine. Big Data Analytics, 5(1):1–18, 2020.

[26] David Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework.

Artificial intelligence, 36(2):177–221, 1988.

[27] Shushan He, Hongyuan Zha, and Xiaojing Ye. Network diffusions via neural mean-field dynamics.

Advances in Neural Information Processing Systems, 33:2171–2183, 2020.

[28] Xinran He, Ke Xu, David Kempe, and Yan Liu. Learning influence functions from incomplete

observations. Advances in Neural Information Processing Systems, 29, 2016.

[29] Lisa Hellerstein and Rocco A Servedio. On PAC learning algorithms for rich boolean function classes.

Theoretical Computer Science, 384(1):66–76, 2007.

[30] Hao Huang, Qian Yan, Lu Chen, Yunjun Gao, and Christian S Jensen. Statistical inference of

diffusion networks. IEEE Transactions on Knowledge and Data Engineering, 33(2):742–753, 2019.

[31] Zhiwei Ji, Ke Yan, Wenyang Li, Haigen Hu, and Xiaoliang Zhu. Mathematical and computational

modeling in complex biological systems. BioMed research international, 2017, 2017.

[32] Dimitris Kalimeris, Yaron Singer, Karthik Subbian, and Udi Weinsberg. Learning diffusion using

hyperparameters. In International Conference on Machine Learning, pages 2420–2428. PMLR, 2018.

[33] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random Boolean network models and the

yeast transcriptional network. Proc. National Academy of Sciences (PNAS), 100(25):14796–14799,

Dec. 2003.

[34] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno, and Mason A

Porter. Multilayer networks. Journal of complex networks, 2(3):203–271, 2014.

[35] R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering of

gene regulatory networks. J. Theoretical Biology, 229:523–537, 2004.

[36] Kyu-Min Lee, Charles D Brummitt, and K-I Goh. Threshold cascades with response heterogeneity

in multiplex networks. Physical Review E, 90(6):062816, 2014.

[37] Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, and Wei Chen. Online influence maximization under

linear threshold model. Advances in Neural Information Processing Systems, 33:1192–1204, 2020.

14

[38] Andrey Lokhov. Reconstructing parameters of spreading models from partial observations. Advances

in Neural Information Processing Systems, 29, 2016.

[39] Kristian Lum, Samarth Swarup, Stephen Eubank, and James Hawdon. The contagious nature of

imprisonment: an agent-based model to explain racial disparities in incarceration rates. Journal of

The Royal Society Interface, 11(98):2014.0409, 2014.

[40] Matteo Magnani, Barbora Micenkova, and Luca Rossi. Combinatorial analysis of multiple networks.

arXiv preprint arXiv:1303.4986, 2013.

[41] Seth Myers and Jure Leskovec. On the convexity of latent social network inference. Advances in

neural information processing systems, 23, 2010.

[42] H. Narasimhan, D. C. Parkes, and Y. Singer. Learnability of influence in networks. In Advances in

Neural Information Processing Systems, pages 3186–3194, 2015.

[43] Balas K Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989.

[44] Mark Newman. Networks. Oxford university press, 2018.

[45] Elisa Omodei, Manlio De Domenico, and Alex Arenas. Characterizing interactions in online social

networks during exceptional events. Frontiers in Physics, 3:59, 2015.

[46] Jean Pouget-Abadie and Thibaut Horel. Inferring graphs from cascades: A sparse recovery frame-

work. In International Conference on Machine Learning, pages 977–986. PMLR, 2015.

[47] Nir Rosenfeld, Eric Balkanski, Amir Globerson, and Yaron Singer. Learning to optimize combi-

natorial functions. In International Conference on Machine Learning, pages 4374–4383. PMLR,

2018.

[48] Daniel J Rosenkrantz, Abhijin Adiga, Madhav Marathe, Zirou Qiu, SS Ravi, Richard Stearns, and

Anil Vullikanti. Efficiently learning the topology and behavior of a networked dynamical system via

active queries. In International Conference on Machine Learning, pages 18796–18808. PMLR, 2022.

[49] Mostafa Salehi, Rajesh Sharma, Moreno Marzolla, Matteo Magnani, Payam Siyari, and Danilo

Montesi. Spreading processes in multilayer networks. IEEE Transactions on Network Science and

Engineering, 2(2):65–83, 2015.

[50] Thomas C Schelling. Micromotives and macrobehavior. WW Norton & Company, 2006.

[51] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algo-

rithms. Cambridge University Press, New York, NY, 2014.

[52] Michael W Sneddon, James R Faeder, and Thierry Emonet. Efficient modeling, simulation and

coarse-graining of biological complexity with nfsim. Nature methods, 8(2):177–183, 2011.

[53] S. Soundarajan and J. E. Hopcroft. Recovering social networks from contagion information. In

Proceedings of the 7th Annual Conference on Theory and Models of Computation, pages 419–430.

Springer, 2010.

[54] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and

Mike Tyers. Biogrid: a general repository for interaction datasets. Nucleic acids research,

34(suppl 1):D535–D539, 2006.

[55] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

[56] Vladimir Vapnik, Esther Levin, and Yann Le Cun. Measuring the VC-dimension of a learning

15

machine. Neural computation, 6(5):851–876, 1994.

[57] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. In Measures of complexity, pages 11–30. Springer, 2015.

[58] Duncan J Watts. A simple model of global cascades on random networks. Proceedings of the National

Academy of Sciences, 99(9):5766–5771, 2002.

[59] Mateusz Wilinski and Andrey Lokhov. Prediction-centric learning of independent cascade dynamics

from partial observations. In International Conference on Machine Learning, pages 11182–11192.

PMLR, 2021.

16

Appendix

6.1 The Settings of Existing Works

Our problem setting follows the line of existing research on learning networked systems. Here, we present

the settings of a few illustrative papers on learning networked systems that span multiple authors and

domains. These references are also cited in the main paper.

Vertex States Update Scheme Time Scale Interaction Function Venue

Binary Synchronous Discrete Deterministic AAAI-2022 [13]

Binary Synchronous Discrete Threshold ICML-2022 [48]

Binary Synchronous Discrete Threshold ICML-2021 [9]

Binary Synchronous Discrete Susceptible-Infected ICML-2021 [15]

Binary Synchronous Discrete Independent Cascade ICML-2021 [59]

Binary Synchronous Continuous Probablistic NeurIPS-2020 [27]

Binary Synchronous Discrete Threshold NeurIPS-2020 [37]

Binary Synchronous Discrete Deterministic ICML-2020 [12]

Binary Synchronous Discrete Threshold ICML-2019 [2]

Binary Synchronous Discrete Threshold & Independent Cascade NeurIPS-2016 [28]

Binary Synchronous Discrete Threshold & Independent Cascade NeurIPS-2015 [42]

Table 2: The problem settings of a few illustrative papers on learning networked systems.

6.2 Additional Material for Section 3

Duality between OR and AND master functions with respect to learning

The AND and OR master functions can be treated similarly in our context. For the OR master function,

the state of a vertex v is 1 if the interaction function in at least one layer outputs a 1. Similarly, for the

AND master function, the state of a vertex v is 0 if the interaction function on at least one layer outputs

a 0. Due to this duality, all our results for OR master functions carry over to AND master functions.

Detailed Proofs in Section 3

Recall that τhi (v) and τh
∗

i (v) are the thresholds of v on the ith layer in a learned system (hypothesis)

h and in the true system h∗, respectively. Fix a vertex v and layer i ∈ [k]. For a configuration C ∼ D,
let B(C, v) denote the event “the threshold condition for v is not satisfied in any of the layers under C
in the true system h∗”. For an h ∈ H and a configuration C, let A(C, i, v, h) be the event such that (1)
the threshold condition of v on the ith layer is satisfied under C in h, and (2) the event B(C, v) occurs.
Formally, A(C, i, v, h) is the event “Γi[C, v] ≥ τhi (v) for the given ith layer and Γj[C, v] < τh

∗
j (v), ∀j ∈ [k]”.

17

Lemma 3.2. For a v ∈ V ′ and an i ∈ [k], suppose τh∗i (v) ≥ 1. Let h ∈ H be a hypothesis learned from

a training set T of size q ≥ 1. For a given α ∈ (0,1), and an integer ρi(v) ∈ [0, τh
∗

i (v)):

(1) If all ρi(v) satisfy:

Pr
C∼D
[Γj[C, v] < τh

∗
j (v), ∀j ∈ [k]

´¹¹¹¸¹¹¹¶
Event B(C, v)

and Γi[C, v] ≥ ρi(v)] < α (3)

then PrC∼D[A(C, i, v, h)] < α.

(2), Even if (1) does not hold, that is, there is a ρi(v) such that

Pr
C∼D
[Γj[C, v] < τh

∗
j (v), ∀j ∈ [k]

´¹¹¹¸¹¹¹¶
Event B(C, v)

and Γi[C, v] ≥ ρi(v)] ≥ α (4)

then the condition PrC∼D[A(C, i, v, h)] ≥ α holds with probability at most (1 − α)q over T ∼ Dq.

Proof. We first consider the case where Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] < α for all integer ρi(v) ∈
[0, τh∗i (v)). This case implies that

Pr C∼D[B(C, v) and Γi[C, v] ≥ 0] < α (5)

Let h be the learned hypothesis by our algorithm. We now argue that Pr C∼D[A(C, i, v, h)] < α. In

particular, note that the learned threshold τhi (v) is always in the range [0, τh∗i (v)]. If τhi (v) = τh
∗

i (v), the
event A(C, i, v, h) does not occur. On the other hand, if τhi (v) < τh

∗
i (v), then the event Γi[C, v] ≥ τhi (v)

is contained in the event Γi[C, v] ≥ 0; thus,

Pr C∼D[A(C, i, v, h)] = Pr C∼D[B(C, v) and Γi[C, v] ≥ τhi (v)] (6)

≤ Pr C∼D[B(C, v) and Γi[C, v] ≥ 0] (7)

< α (8)

Now consider the second case as stated in Ineq (4). Let ρi(v) be the maximal integer in [0, τh∗i (v))
such that Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v)] ≥ α. We now establish the claim:

Claim 6.0.1. If ∃ (C,C′) ∈ T s.t. B(C, v) occurs and Γi[C, v] ≥ ρi(v), then the algorithm learns an h ∈ H
s.t. Pr C∼D[A(C, i, v, h)] < α.

Suppose such a pair (C,C′) exists in T . Let h be the hypothesis returned by our algorithm using

T . Note that since Γj[C, v] < τh
∗

j (v), ∀j ∈ [k] (i.e., the event B(C, v)), we must have C′(v) = 0. By the

definition of the PAC algorithm in the main manuscript, it follows that the learned threshold satisfies:

τhi (v) ≥ ρi(v) + 1 (9)

Recall that A(C, i, v, h) is the event “Γi[C, v] ≥ τhi (v) and event B(C, v) occurs”. If ρi(v) = τh
∗

i (v) − 1,
then we learned the true threshold (i.e., τhi (v) = τh

∗
i (v)), and thus the event A(C, i, v, h) does not occur.

18

On the other hand, if ρi(v) < τh
∗

i (v) − 1, then

Pr C∼D[A(C, i, v, h)] = Pr C∼D[B(C, v) and Γi[C, v] ≥ τhi (v)] (10)

≤ Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v) + 1] (11)

< α (12)

where the last inequality follows from the maximality of ρi(v). This establishes the Claim. To complete

the argument for the second case, let η = Pr C∼D[B(C, v) and Γi[C, v] ≥ ρi(v)]. The probability (over

T ∼ Dq) that no such configuration C exists in T is (1 − η)q ≤ (1 −α)q, where the inequality follows from

Eq (4). Therefore, with probability at most (1−α)q, it holds that Pr C∼D[A(C, i, v, h)] ≥ α for the learned

hypothesis h. This concludes the proof. ∎

Theorem 3.3. For any ϵ, δ ∈ (0,1), with a training set of size q = ⌈1/ϵ ⋅ σk ⋅ log (σk/δ)⌉, the proposed

algorithm learns a hypothesis h ∈ H such that with probabilty at least 1 − δ (over T ∼ Dq),

Pr C∼D[h(C) ≠ h∗(C)] < ϵ (13)

Proof. For a vertex v ∈ V ′, an h ∈ H learned by the proposed algorithm, and a configuration C ∼ D, recall
that h(C) denotes the successor of C under the system (hypothesis) h; h(C)(v) is the state of v in h(C).
Let A(C, v, h) be the bad event where h(C)(v) ≠ h∗(C)(v), that is, the next state of v predicted by h is

wrong. For any layer i ∈ [k], by the mechanisms of the PAC algorithm in the main manuscript:

τhi (v) = max
(C,C′)∈T ∶C′(v)=0

{Γi[C, v]} + 1. (14)

We remark that the learned threshold τhi (v) is at most the value of the true threshold τh
∗

i (v).

We first establish the claim:

Claim 6.0.2. The event A(C, v, h) occurs if and only if h(C)(v) = 1 and h∗(C)(v) = 0.

The necessity is trivially true. To prove sufficiency, we show that the case where h(C)(v) = 0 and

h∗(C)(v) = 1 never occurs. Note that if h(C)(v) = 0, under OR master functions, the threshold condition of

v is not satisfied in any layer under h. That is, Γj[C, v] < τhj (v), ∀j ∈ [k]. Since τhj (v) ≤ τh
∗

j (v),∀j ∈ [k]
, it follows that the threshold condition of v is also not satisfied in any of the layers under h∗. Therefore,

if h(C)(v) = 0, then we must have h∗(C)(v) = 0. This completes the proof of Claim 6.0.2.

Based on Claim 6.0.2, a useful interpretation of the event A(C, v, h) is that the threshold condition

of v is satisfied in at least one layer under C in h, but in the true system h∗, the threshold condition of

v is not satisfied in any of the layers.

To arrive at the result in Ineq (13), we first bound the probability (over T ∼ Dq) of learning a bad h

where Pr C∼D[A(C, i, v, h)] ≥ ϵ/(σk). For a C ∼ D, and a layer i ∈ [k], recall that A(C, i, v, h) is the event

“Γi[C, v] ≥ τhi (v) and Γj[C, v] < τh
∗

j (v), ∀j ∈ [k]”. Note that the event A(C, v, h) occurs if and only if

A(C, i, v, h) occurs for at least one layer i ∈ [k].

For any layer i ∈ [k], if the true threshold τh
∗

i (v) = 0, the event A(C, i, v, h) will never happen as

the algorithm always learns the correct threshold, i.e., τhi (v) = τh
∗

i (v). Now suppose τh
∗

i (v) ≥ 1. We can

apply Lemma 3.2 with α = ϵ/(σk) and conclude that with probability at most (1 − ϵ/(σk))q over the

choices of q examples T ∼ Dq, the learned h is “bad”; that is, Pr C∼D[A(C, i, v, h)] ≥ ϵ/(σk). Overall,

19

when considering all the layers in the network, with probability (over T ∼ Dq) at most k ⋅ (1 − ϵ/(σk))q,
there exists a layer i ∈ [k] such that

Pr C∼D[A(C, i, v, h)] ≥
ϵ

σk
(15)

Next, we bound the probability (over T ∼ Dq) of learning a hypothesis h ∈ H such that Pr C∼D[A(C, v, h)] ≥
ϵ/σ, that is, the probability of h predicting wrong next state of v is at least ϵ/σ. In particular, note that

if Pr C∼D[A(C, v, h)] ≥ ϵ/σ, then there must exist a layer i ∈ [k] such that Pr C∼D[A(C, i, v, h)] ≥ ϵ/(σk).
By our aforementioned argument for Ineq (15), it follows that with probability (over T ∼ Dq) at most

k ⋅ (1 − ϵ/(σk))q,
Pr C∼D[A(C, v, h)] ≥

ϵ

σ
(16)

Lastly, we consider the event where h(C) ≠ h∗(C) for a configuration C ∼ D, that is, the successor of C
predicted by the learned hypothesis h is wrong. Note that if Pr C∼D[h(C) ≠ h∗(C)] ≥ ϵ, then there exists

a vertex v ∈ V ′ such that Pr C∼D[A(C, v, h)] ≥ ϵ/σ, which happens with probability (over T ∼ Dq) at most

σk ⋅ (1 − ϵ/(σk))q. Setting q = ⌈ 1
ϵ
⋅ σk ⋅ log (σk

δ
)⌉, one can verify that σk ⋅ (1 − ϵ/(σk))q ≤ δ. Overall, when

q = ⌈ 1
ϵ
⋅ σk ⋅ log (σk

δ
)⌉, with probability at least 1 − δ over the choices of q examples T ∼ Dq, the learned

h ∈ H satisfies the condition

Pr C∼D[h(C) ≠ h∗(C)] < ϵ. (17)

This completes the proof. ∎

Theorem 3.2. For any given ϵ, δ, β ∈ (0,1), with a training set T of size q = ⌈1/ϵ ⋅ 1/β ⋅ k ⋅ log (σk/δ)⌉,
the proposed algorithm learns an h ∈ H, such that with probability at least 1−δ over T ∼ Dq, h satisfies

that Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ.

Proof. We follow the analysis in Theorem 3.3. Let h ∈ H be the hypothesis learned by the algorithm.

Recall that A(C, v, h) is the “bad” event where h(C)(v) ≠ h∗(C)(v) for a vertex v ∈ V ′ and C ∼ D.
Using Lemma 3.2 where we set α = (ϵβ)/k, with probability (over T ∼ Dq) at most k ⋅ (1 − (ϵβ)/k)q,
we have Pr C∼D[A(C, v, h)] ≥ (ϵβ) for any vertex v ∈ V ′. Thus, with probability (over T ∼ Dq) at most

σk ⋅ (1 − (ϵβ)/k)q, there exists a vertex v ∈ V ′ such that Pr C∼D[A(C, v, h)] ≥ ϵβ.

Equivalently, with probability (over T ∼ Dq) at least 1−σk⋅(1−(ϵβ)/k)q, it holds that Pr C∼D[A(C, v, h)] <
(ϵβ) for all v ∈ V ′. Then by the linearity of expectation,

EC∼D[W (h(C), h∗(C))] < ϵβ ⋅ σ (18)

Using Markov Inequality, it follows that with probability (over T ∼ Dq) at least 1−σk ⋅ (1−(ϵβ)/k)q,
the learned h ∈ H satisfies

Pr C∼D[W (h(C), h∗(C)) ≥ βσ] ≤ ϵ (19)

Setting q = ⌈1/ϵ ⋅ 1/β ⋅ k ⋅ log (σk/δ)⌉, we have 1 − σk ⋅ (1 − (ϵβ)/k)q ≥ 1 − δ. ∎

20

6.3 Additional Material for Section 4

We first revisit some definitions.

Definition 6.1 (Shattering). Given a hypothesis class H, a set R ⊆ X is shattered by H if there

exist two functions g1, g2 ∶ R → X that satisfy both of the following conditions:

• Condition 1: For every C ∈ R, g1(C) ≠ g2(C).
• Condition 2: For every subset R′ ⊆ R, there exists h ∈ H such that ∀C ∈ R′, h(C) = f(C) and

∀C ∈ R ∖R′, h(C) = g(C).

Figure 4: An alternative interpretation of shattering: associated configurations and 2∣R∣ mappings for a
set R.

An alternative interpretation of shattering. In our context, equivalent definitions of the two

conditions are as follows:

• Condition 1: Each C ∈ R is associated with two configurations, denoted by CA and CB , where CA ≠ CB

(i.e., CA = g1(C) and CB = g2(C)).
• Condition 2: Consider the 2∣R∣ possible mappings from R to the associated configurations, such that

in each mapping Φ, every C ∈ R is mapped to one of its associated configuration (i.e., Φ(C) = CA or

Φ(C) = CB). For each such mapping Φ, there exists a system (hypothesis) hΦ ∈ H that produces Φ.

That is, hΦ(C) = Φ(C) for all C ∈ R.

Definition 6.2 (Contested Vertices). We call a vertex v contested for a C ∈ R if CA(v) ≠ CB(v).

We use the above definition of shattering in all the proofs. An example of condition 1 and the 2∣R∣

mappings of condition 2 for a set R with three configurations are shown in Fig 4.

21

Definition 6.3 (Landmark Vertices). Suppose the underlying network has a single layer. Given a

set R ⊆ X , a vertex v ∈ V ′ is a landmark vertex for a configuration C ∈ R if Γ[C, v] ≠ Γ[Ĉ, v] for all

Ĉ ∈ R ∖ {C}.

Let W(R) ⊆ V ′ be the set vertices that are landmarks for at least one configuration in R.

Definition 6.4 (Canonical Sets). Suppose the underlying network has a single layer. A set R ⊆ X
is canonical w.r.t. H if there exists an injective mapping from R toW(R) s.t. each C ∈ R is mapped

to a landmark vertex of C.

Detailed Proofs in Section 4

Lemma 4.4. When the underlying network has a single-layer, a set R ⊆ X can be shattered by H if

and only if R is canonical w.r.t. H

Proof.

(⇒) Suppose H shatters R. We want to show that R is canonical. For each configuration C ∈ R, let
CA and CB be the two associated configurations, where CA ≠ CB (i.e., they disagree on the state of at least

one vertex). Consider the 2∣R∣ possible mappings from R to the associated configurations, where in each

mapping Φ, each C ∈ R is mapped to one of its associated configuration (i.e., Φ(C) = CA or Φ(C) = CB).
The second condition of shattering implies that for each of the mapping Φ defined above, there exists a

system hΦ ∈ H such that hΦ(C) = Φ(C) for all C ∈ R.

Recall that a vertex v contested for a configuration C ∈ R if the state of v in CA is different from

its state in CB . An example of a contested vertex is given in Fig 5.

...
...

...
...
...

...

Figure 5: An example of a contested vertex v for a configuration C. In particular, CA and CB are the two
associated configurations of C. The state of v is highlighted in blue.

Since CA ≠ CB , each C ∈ R has at least one contested vertex. We argue that contexted vertices can

only be in V ′.

Claim 6.4.1. If H shatters R, then contested vertices can only be in the set V ′; that is, only vertices

with unknown thresholds can be contested.

22

For purposes of contradiction, suppose there exists a vertex v ∈ V ∖ V ′ whose threshold is known,

and v is contested for a configuration C ∈ R. The second condition of shattering implies that there exist

two systems h,h′ ∈ H such that the state of v is 1 in h(C), and is 0 under h′(C). However, since the

threshold of v is fixed, for the same configuration C, the state of v is always the same in the successor of

C regardless of the underlying system in H. Therefore, such h,h′ ∈ H cannot coexist, which contradicts

the fact that H shatters R. This establishes the claim.

Our argument of R being canonical is developed based on this notion of contested vertices. Overall,

we want to show the following two claims: (i) configurations in R do not share contested vertices, and

(ii) a contested vertex for a C ∈ R is also a landmark vertex for C. Then since each C ∈ R has at least one

contested vertex, it immediately follows that there exists an injective (i.e., one-to-one) mapping from R
to W(R) where W(R) ⊆ V ′ is the set of vertices that are landmarks for at least one configuration in R.
Then by definition, R is canonical.

We now establish the above two claims. Recall that for a configuration C and a vertex v, Γ[C, v] is
the score of v in C, that is, the number of 1’s in the input provided by C to the interaction function.

Claim 6.4.2. If H shatters R, then no two configurations in R can have any common contested vertices.

For purposes of contradiction, suppose v ∈ V ′ is a contested vertex for at least two configurations

in R; let Ca and Cb be two such configurations. We now show that H cannot shatter R. Recall that

h(Ca)(v) is the state of v in the successor h(Ca) of Ca under a system h ∈ H. By the second condition

of shattering, there exists a h ∈ H such that h(Ca)(v) ≠ h(Cb)(v) (i.e., h(Ca)(v) = 1 and h(Cb)(v) = 0, or
h(Ca)(v) = 0 and h(Cb)(v) = 1).

If Γ[Ca, v] = Γ[Cb, v], then there cannot exist such a system h ∈ H where h(Ca)(v) ≠ h(Cb)(v) since the
threshold condition of v cannot be both satisfied and unsatisfied under the same input to the interaction

function. This violates the second condition of shattering; thus, H fails to shatter R under this case. Now

suppose Γ[Ca, v] < Γ[Cb, v]. Then there cannot exist an h ∈ H such that h(Ca)(v) = 1 but h(Cb)(v) = 0
since if the threshold condition is satisfied under the smaller score (i.e., Γ[Ca, v]), it must also be satisfied

under the larger score (i.e., Γ[Cb, v]). Thus, H fails to shatter R. The argument for the case where

Γ[Ca, v] > Γ[Cb, v] follows analogously. This concludes the Claim 6.4.2.

Claim 6.4.3. If H shatters R, then a contested vertex for a configuration C ∈ R is also a landmark

vertex for C.

We want to show that if v ∈ V ′ is contested for C ∈ R, then Γ[C, v] ≠ Γ[Ĉ, v] for all Ĉ ∈ R ∖ {C}.
Suppose there exists such a Ĉ ∈ R where Γ[C, v] = Γ[Ĉ, v]. Claim 6.4.2 implies that v cannot be contested

for Ĉ, that is, the state of v is the same in the two associated configurations of Ĉ; let sv denote this state

value. Given that v is contested for C, the state of v in one of C’s associated configurations must be

different from sv. Since Γ[Ca, v] = Γ[Cb, v], however, there cannot exist an h ∈ H where h(Ca)(v) ≠ sv
because the threshold condition of v cannot be both satisfied and unsatisfied under the same input to

the interaction function, contradicting the second condition of shattering. This concludes the proof of

Claim 6.4.3.

Overall, we have shown that configurations in R do not share common contested vertices, and that

every contested vertex for a configuration is also a landmark vertex. it follows that there exists an injective

mapping where each C ∈ R is mapped to a landmark vertex of C. Then by definition, R is canonical.

23

(⇐) Suppose that R ⊆ X is canonical w.r.t H. To show that H shatters R, we first discuss how the

two associated configurations, CA and CB , of each C ∈ R should be chosen. We then establish that for

each of the 2∣R∣ possible mappings from R to the associated configurations (where C ∈ R is mapped to

one of its associated configurations), there exists a system in H that produces this mapping.

Given that R is canonical, let Υ ∶ R → W(R) be a corresponding injective mapping from R to the

set W(R) such that each C ∈ R is mapped to a landmark vertex of C. For each C ∈ R, we construct two

associated configuration CA and CB by specifying states of each vertex v ∈ V as follows:

• Case 1: Suppose v ∈ V ∖ V ′, that is, the threshold of v, denoted by τh
∗(v), is known. Then the state

of v in CA and CB is the same, which is determined by τh
∗(v) and Γ[v,C]. That is, CA(v) = CB(v) = 1

if Γ[v,C] ≥ τh∗(v), and CA(v) = CB(v) = 0 otherwise.

• Case 2: v ∈ V ′.
- Subcase 2.1: Suppose v = Υ(C). Then we set CA(v) = 0 and CB(v) = 1. That is, v is contested for C.
- Subcase 2.2: Suppose v ≠ Υ(C), and v = Υ(Ĉ) for some other Ĉ ∈ R. Note that the case where

Γ[C, v] = Γ[Ĉ, v] cannot arise since v is a landmark vertex for Ĉ. If Γ[C, v] < Γ[Ĉ, v], then CA(v) =
CB(v) = 0. On the other hand, if Γ[C, v] > Γ[Ĉ, v], then CA(v) = CB(v) = 1.
- Subcase 2.3: Suppose v ≠ Υ(C), and also v ≠ Υ(Ĉ) for any other Ĉ ∈ R, then CA(v) = CB(v) = 1.

This completes the construction of the two associated configurations CA and CB for each C ∈ R. We now

show that H shatters R under the defined associations.

To begin with, observe that CA ≠ CB for all C ∈ R, as the states of Υ(C) are different in CA and CB .
Thus, the first condition of shattering is satisfied.

Now consider the 2∣R∣ possible mappings from R to the associated configurations, where in each

mapping Φ, each C ∈ R is mapped to one of its associated configuration (i.e., Φ(C) = CA or Φ(C) = CB).
To prove the second condition of shattering, we want to show that for each Φ defined above, there exists

a system hΦ ∈ H such that hΦ(C) = Φ(C) for all C ∈ R. Given a mapping Φ, we characterize hΦ by

presenting how the threshold of each vertex is determined:

• Case 1: Suppose v ∈ V ∖ V ′, then its threshold is already known.

• Case 2: Suppose v ∈ V ′.
- Subcase 2.1: If v ≠ Υ(C) for any C ∈ R, then we set v’s threshold to be 0.

- Subcase 2.2: If v = Υ(C) for a C ∈ R. Then set v’s threshold to be Γ[C, v] if Φ(C)(v) = 1. On the

other hand, Φ(C)(v) = 0, then set v’s threshold to be Γ[C, v] + 1.

This completes the specification of hΦ. One can easily verify that hΦ(C) = Φ(C) for all C ∈ R; that is, the
second condition of shattering is satisfied. Overall, we have shown that H shatters R. This concludes

the proof. ∎

Theorem 4.5. When the underlying network has a single layer, a shatterable set of size σ can be

constructed. Thus, we have Ndim(H) = σ.

Proof. We show how a canonical set of size σ can be constructed. Then the theorem follows from the

equivalence between a canonical set and a shatterable set. In particular, given any underlying single-layer

network G, we present an algorithm to construct a canonical set R ⊂ X that consists of σ configurations.

Let G′ = G[V ′] be the subgraph induced on V ′; G′ could be disconnected. The algorithm involves a

depth-first traversal over G′, starting from any initial vertex. During the traversal, when a vertex v ∈ V ′

is visited for the first time, a configuration Cv is constructed. In particular, our algorithm enforces v to

24

be the landmark vertex to which Cv is mapped under the injective mapping defined for a canonical set.

We now describe the algorithm. The set R is initially empty. Starting from any vertex v1 ∈ V ′, we
proceed with a depth-first traversal on G′, while maintaining a stack K ⊆ V ′ of vertices that are currently

being visited. Let vi, i ∈ [σ], denote the ith vertex that is visited for the first time in the traversal. When

vi is visited for the first time, a configuration Cvi is constructed and added to the set R where Cvi(v) = 1
if v ∈ K and Cvi(v) = 0 otherwise. Note that the states of vertices in V ∖ V ′ are always 0 in Cvi . The

algorithm terminates when all vertices in V ′ are visited (and thus K is empty), and returns R. A pictorial

example of the algorithm is given in Fig 6.

Figure 6: A pictorial example of the algorithm running on a graph of 5 vertices. Vertices in the stack K
are highlighted in blue.

Given the resulting set R, Since G′ has σ vertices, ∣R∣ = σ. We now show that each vi ∈ V ′ is a

landmark vertex of Cvi ∈ R, thereby establishing that R is canonical. For a vi ∈ V ′, recall that the score

vi in a configuration C, denoted by Γ[C, vi], is the number of state-1 vertices in v’s closed neighborhood

in G.

The proof of vi being a landmark vertex for Cvi proceeds in two steps. First, consider the subset

R1 = {Cv1 , ...,Cvi−1} ⊂ R of configurations constructed by the algorithm before vi was visited for the first

time. (If vi = v1, then R1 is empty.) We argue that the score of vi in any of the configurations in R1

is different from the score of vi in Cvi . That is, Γ[C, vi] ≠ Γ[Cvi , vi], ∀C ∈ R1. Next, consider the subset

R2 = {Cvi+1, ...,Cvσ} ⊂ R of configurations constructed by the algorithm after vi was visited for the first

time; if vi = vσ, then R2 is empty. Similarly, we argue that the scores of vi in configurations in R2 are

different from the score of vi in Cvi .

We start with the first claim:

Claim 6.4.4. For each i, 1 ≤ i ≤ σ, Γ[C, vi] ≠ Γ[Cvi , vi], ∀C ∈ R1 where R1 = {Cv1 , ...,Cvi−1} ⊂ R.

The claim is trivially true if vi = v1 since R1 is empty. Suppose i > 1. Observe that when vi is visited

for the first time, vi gets added to K, and thus Γ[Cvi , vi] = Γ[Cvi−1 , vi] + 1. We now show that before the

algorithm visits vi for the first time, the scores of vi in the sequence of constructed configurations in R1

are non-decreasing. Note that when the algorithm traverses connected components that do not contain

vi, the score of vi is always 0 in the resulting configurations. Now focus on the connected component

containing vi. Recall that in a depth-first traversal, a vertex remains on the stack if it has at least one

unvisited neighbor. It follows that all of vi’s neighbors who were visited before vi will remain on the stack

K before vi is visited. Since only vertices on the stack have state-1 in each configuration, the score of vi

is non-decreasing in (Cv1 , ...,Cvi−1), that is Γ[Cv1 , vi] ≤ ... ≤ Γ[Cvi−1 , vi]. Since Γ[Cvi , vi] = Γ[Cvi−1 , vi] + 1,

25

it follows that Γ[C, vi] ≠ Γ[Cvi , vi], ∀C ∈ R1. This concludes Claim 6.4.4.

Now, we establish the second claim:

Claim 6.4.5. For each i, 1 ≤ i ≤ σ, Γ[C, vi] ≠ Γ[Cvi , vi], ∀C ∈ R2 where R2 = {Cvi+1 , ...,Cvσ} ⊂ R.

The claim is trivially true if vi = vσ since R2 is then empty. Suppose i < σ. We show that when a

vertex vj ∈ V ′, i < j ≤ σ, is visited for the first time (and Cvj ∈ R2 is constructed), if vi is on the stack

(i.e., vi ∈ K), then Γ[Cvj , vi] > Γ[Cvi , vi]; if vi is not on the stack, then Γ[Cvj , vi] < Γ[Cvi , vi]. Let Nbef(v)
and Naft(v) be the set of neighbors that were visited before and after vi, respectively. Suppose vi ∈ K
when vj is visited. Note that all vertices in Nbef(v) must also be on the stack K. Further, at least one of

v’s neighbors in Naft(v) must be on the stack. It follows that Γ[Cvj , vi] ≥ Γ[Cvi , vi] + 1 > Γ[Cvi , vi]. Now

suppose vi ∉ K when vj is visited. This means that no neighbors in Naft(v) are on the stack. It follows

that Γ[Cvj , vi] ≤ Γ[Cvi , vi] − 1 < Γ[Cvi , vi]. Consequently, Γ[C, vi] ≠ Γ[Cvi , vi], ∀C ∈ R2. This establishes

the claim.

With Claims 6.4.4 and 6.4.5, we have shown that for any Cvi ∈ R, it holds that

Γ[Cvi , vi] ≠ Γ[C, vi], ∀C ∈ R,C ≠ Cvi (20)

That is, vi is a landmark vertex of Cvi . This immediately implies the existence of an injective mapping

where each Cvi ∈ R is mapped to vi, i ∈ [σ]. Then by definition, R is canonical. Given the equivalence

between a canonical set and a shatterable set shown in Lemma 4.4, it follows that R is also shatterable

by H. This concludes the proof. ∎

Lemma 4.6. Suppose the underlying network has k ≥ 2 layers. Then the size of any shatterable set is

at most kσ.

Proof. We first show that for any shatterable set R, each vertex v ∈ V ′ is contested for at most k

configurations in R. Recall that a vertex v is contested for a configuration C ∈ R if CA(v) ≠ CB(v),
where CA and CB are the two associated configurations of C defined by shattering (i.e., CA = g1(C) and
CB = g2(C)). It is easy to see that Claim 6.4.1 in Theorem 4.5 carries over to the multilayer case. That

is, contested vertices can only be in the set V ′.

For a v ∈ V ′, let Rv ⊆ R be the subset of configurations with v being (one of) their contested vertices.

W.l.o.g., suppose Rv ≠ ∅. We establish the claim:

Claim 6.4.6. For each C ∈ Rv, ∃ i ∈ [k] such that Γi(C, v) > Γi(Ĉ, v), ∀Ĉ ∈ Rv ∖ {C}.

For contradiction, suppose there exists a C ∈ Rv such that for all layers i ∈ [k], Γi(C, v) ≤ Γi(Ĉ, v)
for at least one Ĉ ≠ C, Ĉ ∈ Rv. We now argue that H cannot shatter Rv (and thus, cannot shatter

R). In particular, consider a mapping Φ (among the 2∣R∣ possible mappings from R to the associated

configurations) such that Φ(C)(v) = 1, and Φ(Ĉ)(v) = 0 for all other Ĉ ∈ Rv ∖ {C}. Suppose there

exists a hΦ ∈ H that is consistent with such a mapping Φ, where hΦ(C)(v) = 1 and hΦ(Ĉ)(v) = 0 for all

Ĉ ∈ Rv ∖{C}. Let τhΦ

i (v) denote the threshold of v in the ith layer under such an hΦ. Since hΦ(Ĉ)(v) = 0
for all Ĉ ≠ C, we have

τhΦ

i (v) > max
Ĉ∈Rv∖{C}

Γi(Ĉ, v) ≥ Γi(C, v),∀i ∈ [k] (21)

26

However, the above inequality implies that the threshold condition of v is not satisfied on any of the

k layers under C, thereby contradicting the condition hΦ(C)(v) = 1. Thus, no such hΦ ∈ H exists, and H
does not shatter Rv. This establishes the claim. Overall, Claim 6.4.6 implies that for each v ∈ V ′, the
size of Rv is at most k. It immediately follows that ∣R∣ ≤ kσ for any shatterable set R. This concludes

the proof. ∎

Lemma 4.7. Suppose h∗ is an MSyDS whose underlying network has k ≥ 2 layers. Let ĥ∗ be a

single-layer system obtained from h∗ by using the network in any layer i ∈ [k]. If a set R is shatterable

by the hypothesis class of ĥ∗, then it is also shatterable by the hypothesis class of h∗.

Proof. Given the underlying multilayer network M = {Gi}ki=1 of the true system h∗, let ĥ∗ be a new

system with a single-layer underlying network Gi ∈ M, for a layer i ∈ [k]. The vertices’ thresholds on Gi
are carried over from h∗ to ĥ∗. For our learning context, the set V ′ of vertices with unknown thresholds

remains the same between h∗ and ĥ∗. Let Ĥ be the corresponding hypothesis class of ĥ∗,.

Given a set R that is shatterable by Ĥ, for each C ∈ R, let ĈA and ĈB be the two associated

configurations of C. Further, for each mapping Φ from R to the associated configurations, let ĥΦ ∈ Ĥ be

a system that produces Φ, that is, ĥΦ(C) = Φ(C), for all C ∈ R.

We show that R is also shatterable by H, the hypothesis class of h∗. In particular, for each C ∈ R,
let CA and CB be the two associated configurations under the shatterable condition for H; we choose

CA = ĈA and CB = ĈB . Now consider any of the 2∣R∣ mappings from R to the associated configurations.

We argue that for each of such a mapping Φ, there exists a system hΦ ∈ H where hΦ(C) = Φ(C) for all

C ∈ R. Specifically, in hΦ, the thresholds of each vertex v ∈ V ′ on each layer j ∈ [k], denoted by, τhΦ

j (v),
are assigned as follows. For each layer j ∈ [k], if j = i (i.e., the layer for which ĥ∗ is defined), then τhΦ

j (v)
equals to the threshold of v in ĥΦ. Otherwise, we set τhΦ

j (v) = degj(v) + 2, where degj(v) is the degree

of v in the jth layer. Note that setting τhΦ

j (v) = degj(v) + 2 makes v’s interaction function on the jth

layer to be the constant-0 function. One can easily verify that hΦ(C) = Φ(C), for all C ∈ R and thus R is

shatterable by H. This concludes the proof. ∎

Lemma 4.9. Given a multilayer network M and a subset V ′ of vertices, for each set QM,V ′ , there

is a shatterable set of size ∣QM,V ′ ∣ for the corresponding hypothesis class over M where thresholds of

vertices in V ′ are unknown.

Proof. Given a k-layer networkM with n vertices, let V ′ be any subset of vertices inM. Let H be the

threshold dynamical system overM where the threshold functions of vertices in V ′ are unknown. For a

subset QM,V ′ of vertex-layer pairs, we present a method to construct a shatterable set R of size ∣QM,V ′ ∣.
In particular, for each (v, i) ∈ QM, there is a corresponding configuration C(v,i) ∈ R, defined as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C(v,i)(v′) = 1 If v′ ∈ N[v, i]

C(v,i)(v′) = 0 Otherwise

where N[v, i] is the closed neighborhood of v on the ith layer inM.

It is easy to see that ∣R∣ = ∣QM,V ′ ∣. We now show that the resulting set R is shatterable by H. Recall
that Γi[C, v] is the score (i.e., the number of state-1 vertices in v’s closed neighborhood) of v in the ith

layer under C. We first observe the following:

27

Observation 6.5. Γi[C(v,i), v] = deg(v, i) + 1, for all (v, i) ∈ QM,V ′ .

Observation 6.6. Γi′[C(v,i), v′] < deg(v′, i′) + 1, for all (v, i), (v′, i′) ∈ QM,V ′ , (v, i) ≠ (v′, i′).

The first observation holds by the construction of C(v,i). To see the second observation, recall that

QM,V ′ is defined where NM[v′, i′] ∖NM[v, i] ≠ ∅,∀(v′, i′), (v, i) ∈ QM,V ′ , (v′, i′) ≠ (v, i). This implies

that given a C(v,i) ∈ R and a pair (v′, i′) ∈ Q, at least one vertex in N[v′, i′] is in state 0 under C(v,i).
The second observation follows immediately.

The key conclusion from the above two observations is that:

Γi[C(v,i), v] > Γi[C(v,i′), v],∀i′ ≠ i, i′ ∈ [k] (22)

This allows us to choose v as the contested vertex for C(v,i), i ∈ [k], under the shattering of R. For

each (v, i) ∈ QM,V ′ , we now discuss how the two associated configurations of C(v,i), denoted by CA(v,i) and
CB(v,i), can be chosen to satisfy the shattering conditions. In CA(v,i), the state of v is 1, where the states of

all other vertices are 0. On the other hand, CB(v,i) is the zero vector. It is clear that CA(v,i) ≠ CB(v,i), that is,
the first shattering condition is satisfied.

We now show that the second shattering condition also holds. In particular, for each mapping Φ

from R to the associated configurations, by choosing the thresholds of vertices, we prove the existence of

a system hΦ that produces the mapping Φ. For each C(v,i) ∈ R, if CA(v,i)(v) = 0, then the threshold of v in

the ith layer is set to deg(v, i) + 2 in hΦ. On the other hand, if CA(v,i)(v) = 1, then then the threshold of v

in the ith layer is set to deg(v, i) + 1. By Ineq (22), one can easily verify that hΦ(C(v,i)) = Φ(C(v,i)), for
all C(v,i) ∈ R. This concludes the proof. ∎

Lemma 4.10. Given n ≥ 1, k ≥ 2, and V ′ ⊆ [n], let M be a graph chosen uniformly at random from

the space of all k-layer graphs with n vertices. With probability at least 1 − 4 ⋅ (σk)2 ⋅ (3
4
)n,M admits

a set QM,V ′ of size kσ, σ = ∣V ′∣.

Proof. Recall that QM,V ′ is a set of vertex-layer pairs (v, i), v ∈ V ′, i ∈ [k], such that every (v, i) ∈ QM,V ′

satisfies:

NM[v, i] ∖NM[v′, i′] ≠ ∅,∀(v′, i′) ∈ QM,V ′ , (v′, i′) ≠ (v, i) (23)

where NM[v, i] is the closed neighborhood of v in the ith layer inM.

We use Gn,k,1/2 to denote the space of k-layer graphs with n vertices. Let M be a graph chosen

uniformly at random from Gn,k,1/2, denoted byM∼ Gn,k,1/2. Equivalently,M is a random k-layer graph

with n vertices where each edge in each layer is realized with probability p = 1/2. We will use this equivalent

definition in the proof.

Fix two vertex-layer pairs, (v, i) and (v′, i′), v′ ∈ V ′, i ∈ [k], (v, i) ≠ (v′, i′). Let A ⊆ V ′,{v, v′} ⊆ A,
be a subset of vertices that includes v and v′. Let d = A. Recall that N[v, i] denotes the closed

neighborhood of v on the ith layer in M. Suppose v ≠ v′. The probability (over M ∼ Gn,k,1/2) that

28

N[v, i] = A and A ⊆ N[v′, i′] (i.e., condition (23) is violated) is of the form

PrM∼Gn,k,1/2[N[v, i] = A and A ⊆ N[v′, i′]]

= 1

2
´¸¶

Edge(v,v′)

⋅ (1
2
)d−2 ⋅ (1

2
)n−d

´¹¹¹¸¹¹¹¶
Other neighbors and non-neighbors of v

⋅ (1
2
)d−2 ⋅

⎛
⎝
n−d
∑
j=0
(n − d

j
)(1

2
)j(1

2
)n−d−j

⎞
⎠

´¹¹¸¹¹¹¶
Other neighbors and non-neighbors of v′

= (1
2
)n+d−3

If v = v′, then one can verify that PrM∼Gn,k,1/2[N[v, i] = A and A ⊆ N[v′, i′]] = (1/2)n+d−2.

Extending the argument to any such subset A, we then have

PrM∼Gn,k,1/2[N[v, i] ⊆ N[v′, i′]] ≤
n

∑
d=1
(n
d
)(1

2
)n+d−2

< (1
2
)n−2 ⋅ (3

2
)n

= 4 ⋅ (3
4
)n

Combining all pairs, the probability (over M ∼ Gn,k,1/2) that there exists a (v, i) and (v′, i′), v ∈
V ′, i ∈ [k] such that N[v, i] ⊆ N[v′, i′] is at most:

8 ⋅ (σk
2
) ⋅ (3

4
)n ≤ 4 ⋅ (σk)2 ⋅ (3

4
)n

Lastly, with probability at least 1 − 4 ⋅ (σk)2 ⋅ (3
4
)n, condition (23) holds for all pairs (v, i), v ∈ V ′,

i ∈ [k], that is, there exists a set QM,V ′ of size kσ. This concludes the proof. ∎

6.4 Additional Experiments

Resources. All experiments were performed on Intel Xeon(R) Linux machines with 64GB of RAM.

Our source code (in C++ and Python), documentation, and selected datasets are available in the code

appendix.

Additional Results on the Nararajan Dimension

Lemma 4.9 in Section 4.3 can be used to estimate the Natarajan dimension of a given graph in the

following manner. Two vertex-layer pairs (v, i) and (v′, i′) satisfy the pairwise non-nested neighborhood

(PNN) property if N[v, i] /⊆ N[v′, i′] and N[v′, i′] /⊆ N[v, i]. We recall that the Natarajan dimension is

lower bounded by the cardinality of any set of vertex-layer pairs satisfying the PNN property. Therefore,

our objective here is to find a large set of such pairs. To this end, we construct a graph over vertex-layer

pairs, called the PNN graph. We draw an edge between two pairs if they violate the PNN property, i.e.,

if one of the closed neighborhoods is a subset of another. We apply a greedy vertex coloring algorithm

and then choose the largest subset of vertex-layer pairs assigned the same color. By definition of vertex

coloring, the chosen vertex-layer pairs form an independent set in the PNN graph, which in turn implies

that any vertex-layer pairs in this set satisfy the PNN property. Hence, the cardinality of this set is a

lower bound on the Natarajan dimension.

The results are shown in Figure 7. Recall that the theoretical results show that with very high

29

probability, every vertex-layer pair satisfies the PNN property, and therefore, the Natarajan dimension

is kσ w.h.p, even for the case where σ = n for suitably large n. Our experiments suggest that this holds

for even smaller graphs, say of size n = 1000. Secondly, our results indicate that the Natarajan dimension

is close to kσ for a large range of edge densities. In the left panel of Figure 7, we note that only for very

small or very large values of edge probabilities, the set size reduces. For the extreme cases where the

graph is an independent set or is a complete graph in all layers, it can be easily shown that the Natarajan

dimension is σ. We observe the same behavior for increasing k. In the right panel of Figure 7, we plot

separately for very small edge probabilities to observe the evolution of the lower bound from n to nk.

We note that the standard deviation across replicates is very low as well (< 50).

0.0 0.2 0.4 0.6 0.8 1.0

Edge probability

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

(v
,i

)
p

ai
rs

sa
ti

sf
yi

n
g

P
N

N
p

ro
p

.

Multi-Gnp: Lower bound for Nat. dimn (n = 1000)

Layers

2 3 4 5

0.000 0.002 0.004 0.006 0.008 0.010

Edge probability

Zoomed in on low edge density

Layers

2 3 4 5

Figure 7: Experimental estimates for Natarajan dimension for Multi-Gnp graphs with varying number
of layers k and edge probability. Each graph has 1000 vertices. For each value of k and edge
probability, 100 replicates were used. The maximum standard deviation across replicates is less
than 50.

30

	Introduction
	Preliminaries
	Multilayer Networked Dynamical Systems
	The Learning Problem

	PAC Learnability of Multilayer Networked Systems
	An Efficient PAC Learner
	The Sample Complexity

	Tight Analytical Results for Natarajan Dimension
	An Exact Characterization for a Single Layer
	Bounds on Ndim for Multilayer Systems
	The Asymptotic Tightness of the Bounds

	Experimental Analysis
	Experimental Results

	Future Work
	The Settings of Existing Works
	Additional Material for Section 3
	Additional Material for Section 4
	Additional Experiments

