Published on

Note on Spectral Graph Theory - Lecture 3

Spectrum of Km,nK_{m,n}

Consider the complete bipartite graph Km,nK_{m,n} with adjacency matrix:

A=(0JJT0)A = \begin{pmatrix} 0 & J \\ J^T & 0 \end{pmatrix}

where JJ is the m×nm \times n all-ones matrix.

Eigenvalue 0

Consider a simpler case where m=2m = 2, with two vertices vv and ww on one side. An easy eigenvector with eigenvalue 0 is:

v=(1100)\vec{v} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}

where the values at vv and ww are 11 and 1-1, respectively. This is more general than just K2,nK_{2,n}. In particular, whenever we have 2 vertices with the same as of neighbors in a graph, we immediately have the above eigenvector with eigenvalue 0.

Furthermore, it is easy to see that, if vv and ww are adjacent, then the eigenvalue is 1-1.

It follows that, for Km,nK_{m,n}, we have (m1)+(n1)(m-1) + (n-1) linearly independent eigenvectors of eigenvalue 0.

Additional eigenvalues

To find the remaining 2 eigenvalues, consider a vertex x\vec{x}:

x=(aabb),Ax=(nbnbmama)\vec{x} = \begin{pmatrix} a \\ \vdots \\ a \\ b \\ \vdots \\ b \end{pmatrix}, \quad A\vec{x} = \begin{pmatrix} nb \\ \vdots \\ nb \\ ma \\ \vdots \\ ma \end{pmatrix}

where the values of all vertices in the first partition are reals a>0a > 0's, and those of in the second partition are reals b>0b > 0's. This gives us λ=nba=mab\lambda = \frac{nb}{a} = \frac{ma}{b}, which implies ma2=nb2ma^2 = nb^2. We can scale, thus set a=1a = 1, and we have b=±mnb = \pm\sqrt{\frac{m}{n}}, λ=±mn\lambda = \pm\sqrt{mn}.

Spectrum of Directed Cycles

Consider the adjacency matrix AA of a directed cycle:

A=(0100001000011000)A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}

nn-th roots of unity are eigenvalues

An nn-th root of unity is a complex number zz such that zn=1z^n = 1. In general, zz has the form:

z=exp(2πikn)=cos(2πkn)+isin(2πkn)z = \exp\left(\frac{2\pi i k}{n}\right) = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)

for k=0,1,,n1k = 0, 1, \ldots, n-1.

Let ω\omega be any nn-th root of unity. Consider the vector:

vω=(1ωω2ωn1)\vec{v}_{\omega} = \begin{pmatrix} 1 \\ \omega \\ \omega^2 \\ \vdots \\ \omega^{n-1} \end{pmatrix}

Then:

Avω=(ωω2ω31)=ωvωA\vec{v}_{\omega} = \begin{pmatrix} \omega \\ \omega^2 \\ \omega^3 \\ \vdots \\ 1 \end{pmatrix} = \omega \cdot \vec{v}_{\omega}

Thus, AA has nn eigenvalues, where each eigenvalue is an nn-th root of unity.

Circulant Matrices

A circulant matrix has the form:

C=(c0c1cn1cn1c0cn2c1c2c0)=c0A0+c1A1++cn1An1C = \begin{pmatrix} c_0 & c_1 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & \cdots & c_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ c_1 & c_2 & \cdots & c_0 \end{pmatrix} = c_0A^0 + c_1A^1 + \cdots + c_{n-1}A^{n-1}

where AA is the adjacency matrix of a directed nn-cycle, and c0,,cn1Rc_0, \ldots, c_{n-1} \in \mathbb{R}.

For any nn-th root of unity ω\omega, consider the same vector vω\vec{v}_{\omega} defined above, we have:

Cv=λvwhere λ=c0+c1ω+c2ω2++cn1ωn1C\vec{v} = \lambda\vec{v} \quad \text{where } \lambda = c_0 + c_1\omega + c_2\omega^2 + \cdots + c_{n-1}\omega^{n-1}

Thus, a circulant matrix has nn eigenvalues.

Spectrum of Undirected Cycles

Now consider an undirected cycle CnC_n. Its adjacency matrix has the form:

(01001101000100010001)\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}

which is circulant with λ=ω+ωn1\lambda = \omega + \omega^{n-1}, where ω\omega is any nn-th root of unity.

Proof that λ\lambda is real

λ=ω+ωn1=e2πikn+e(n1)2πikn(k=0,1,,n1)\lambda = \omega + \omega^{n-1} = e^{\frac{2\pi ik}{n}} + e^{\frac{(n-1)2\pi ik}{n}} \quad (k = 0, 1, \ldots, n-1) =e2πikn+e2πikne2πikn=e2πikn+e2πikn= e^{\frac{2\pi ik}{n}} + e^{\frac{2\pi ik}{n}} \cdot e^{-\frac{2\pi ik}{n}} = e^{\frac{2\pi ik}{n}} + e^{-\frac{2\pi ik}{n}} =eiθ+eiθ22=2cos(2πkn)= \frac{e^{i\theta} + e^{-i\theta}}{2} \cdot 2 = 2\cos\left(\frac{2\pi k}{n}\right)

where θ=2πkn\theta = \frac{2\pi k}{n}.

Matrix Powers and Walks

Let AA be the adjacency matrix of an undirected graph.

  1. (Ak)uv=(A^k)_{uv} = number of walks of length kk from uu to vv

  2. Trace(A)=0=λ1++λn\text{Trace}(A) = 0 = \lambda_1 + \cdots + \lambda_n

  3. Trace(A2)=2E=λ12+λ22++λn2\text{Trace}(A^2) = 2|E| = \lambda_1^2 + \lambda_2^2 + \cdots + \lambda_n^2 (each triangle contributes to the trace)

  4. Trace(A3)=6×number of triangles=λ13+λ23++λn3\text{Trace}(A^3) = 6 \times \text{number of triangles} = \lambda_1^3 + \lambda_2^3 + \cdots + \lambda_n^3.

    To see this, note that each triangle is counted exactly twice by each of the vertex on this triangle.

  5. Aii2=A_{ii}^2 = degree of vertex ii

  6. Aij2=A_{ij}^2 = number of common neighbors of vertices ii and jj